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The present work modelled the enzymatic hydrolysis of red tilapia (Oreochromis spp.) 

viscera with Alcalase® 2.4 L in both 0.5 and 5 L reactors. The best conditions for the 

enzymatic hydrolysis were 60°C and pH 10. The product inhibited the enzymatic 

hydrolysis, and the enzyme deactivated following second-order reaction. 𝐾𝑀 and 𝐾𝑝 from 

a secondary plot of 𝐾𝑀
𝑎𝑝𝑝

 as a function of inhibitor concentration, and 𝑘2, 𝑝, and 𝑘3 were 

found by non-linear regression. While the obtained parameters modelled the 0.5 L reactor 

well, it did not model the 5 L reactor, probably because of unconsidered fluid dynamics in 

the model. To have a better modelling, a neural network (tensorflow.keras.models module) 

was built and trained. The neural network modelled the enzymatic hydrolysis of red tilapia 

at several concentrations of substrate and enzyme. This result proved that neural networks 

are a powerful tool for modelling biological processes. 
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Introduction 

 

The growing consumer interest in natural and 

healthy foods has intensified. Bioactive peptides are 

currently a focus of research because they have 

shown multiple biological properties that natural 

processes can provide (Dullius et al., 2020). 

Enzymatic hydrolysis is a process that allows for 

breaking the peptide bonds that modify the structure 

of proteins (Wu et al., 2020). Enzymatic hydrolysates 

are obtained under controlled conditions of pH, 

temperature, and hydrolysis time. Enzymes such as 

trypsin, pepsin, chymotrypsin, papain, as well as 

industrial food-grade proteinases including 

Protamex™, Alcalase®, and Flavourzyme® from 

microorganisms have been widely applied 

(Samaranayaka and Li-Chan, 2011). 

Establishing a kinetic model for the enzymatic 

hydrolysis of proteins is a complex endeavour since 

classical models such as the Michaelis-Menten 

kinetics misrepresent the mechanism (Qi and He, 

2006). To improve the models based on Michaelis-

Menten approach, Marquez Moreno and Fernandez 

Cuadrado (1993) proposed a kinetic model involving 

substrate inhibition and second-order enzymatic 

deactivation that was modified by González-Tello et 

al. (1994). Later, Qi and He (2006) included 

substrate, product inhibition, and enzyme 

inactivation, then developed full deductions and 

mechanisms, which later on were modified by 

Valencia et al. (2019). 

Modelling the enzyme deactivation is 

challenging (Gálvez et al., 2016) due to the 

complexity of the reactions involved. Response 

surface methodology has been used to model 

enzymatic hydrolysis, but for biological systems, 

polynomials fail to model, in some cases, the 

complete system (Morales-Medina et al., 2016). 

Furthermore, when modelling large volume reactors 

(i.e., 5 L), the fluid dynamics such as stirring speed, 

heat transfer, mass transfer, viscosity, and turbidity 

need to be considered to predict the data accurately. 

Therefore, it could result in an overly complex system 

of equations. 
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Artificial neural networks (ANN) are an 

alternative to modelling enzymatic hydrolysis since 

they predict values of the product regarding input 

conditions without considering parameters from the 

kinetics (Corazza et al., 2005). ANN consist of 

connected units or nodes through an input layer, one 

or more hidden layers, and an output layer. With some 

specific algorithms, ANN are capable of learning any 

mathematical function with sufficient training data 

(Aggarwal, 2018). They have been applied in the 

modelling of biological systems (Castro et al., 2010; 

Das et al., 2015; Gálvez et al., 2016; Morales-Medina 

et al., 2016). 

The present work thus aimed to apply a model 

previously proposed by Qi and He (2006) and 

modified by Valencia et al. (2019) to the enzymatic 

hydrolysis of red tilapia viscera in a small reactor (0.5 

L), and find the kinetic constants based on the 

mechanism observed under typical operating 

conditions; also, to model the enzymatic hydrolysis 

of red tilapia viscera in a larger reactor (5 L) via the 

neural network approach to improve the goodness of 

fit parameters. 

  

Materials and methods  

 

Materials management 

Fresh red tilapia (Oreochromis spp.) viscera 

were provided by Piscícola el Gaitero in Sopetrán at 

750 MASL, Colombia. The viscera were packed in 

polyethylene bags, and kept in ice during 

transportation. Upon arrival at the laboratory, the 

tilapia viscera were minced using a blender, and 

heated at 90°C for 20 min to inactivate endogenous 

enzymes. The tilapia viscera were then stored in a 

plastic vessel at -20°C. After 24 h, the fat was 

separated from the viscera, and then removed by 

cutting the frozen block with a knife. The defatted 

viscera remained at -20°C until further use. The 

protein content of viscera was measured by the 

Kjeldahl method using a conversion factor of 6.25 

(AOAC, 2005). 

 

Catalytic activity of Alcalase® 2.4 L 

The proteolytic activity of Alcalase® 2.4 L was 

determined following the Anson method with slight 

modifications (Vasquez and Zapata Montoya, 2018). 

Tilapia viscera or casein (600 µL) was mixed with 60 

µL of the enzyme. The mixture was incubated at the 

experimental design temperature for 10 min. The 

 

reaction was stopped by the addition of 600 µL of 110 

mM TCA. The mixture was centrifuged at 10,000 

rpm for 2 min, and 300 µL of the supernatant was 

mixed with 750 µL of 0.5 M Na2CO3 and 150 µL of 

the 0.5 M Folin reagent. The mixture was incubated 

at 37°C for 30 min, and the absorbance was measured 

at 660 nm. The standard curve of tyrosine allowed the 

amount in micromoles of tyrosine equivalents 

released from casein per minute to be calculated. 

 

Effect of pH and temperature on the catalytic activity 

of Alcalase® 2.4 L 

To establish the optimal pH and temperature 

conditions of the enzyme Alcalase® 2.4 L 

(Novozymes, Denmark) in the catalytic activity of the 

red tilapia viscera substrate, a central composite 

design was performed with varying pH (8, 9, and 10) 

and temperature (40, 50, and 60°C) levels. The 

analysis of variance (ANOVA) from Design-Expert® 

Software (Stat-Ease, Inc., USA) was used to assess 

the significance of the regression coefficients, and to 

predict the best conditions of pH and temperature. 

 

Enzymatic hydrolysis of red tilapia viscera 

The enzymatic hydrolysis of red tilapia viscera 

was conducted in a jacketed vessel at pH 10 at 60°C. 

The reaction was started by adding Alcalase® 2.4 L 

(Novozymes, Denmark) at an enzyme/substrate (E/S) 

ratio of 10% (w/w, wet weight) with 4.6 units of 

enzymatic activity per gram of protein. The 

hydrolysis was controlled using a pH-stat by adding a 

2 N NaOH solution using a TitroLine@ 7000 (Xylem 

Analytics, Germany) for the 0.5 L reaction, and a 

Bioflo 310® (New Brunswick Scientific Co., Inc. 

USA) for the 5 L reaction, for 60 and 175 min, 

respectively. The enzyme was inactivated by heating 

at 90°C for 10 min. The hydrolysate was centrifuged 

at 4,500 g (Heraeus Multifuge 3L, Labcare Ltd., 

Buckinghamshire, England) for 30 min at 4°C. The 

supernatant (tilapia hydrolysate) was stored at -20°C 

until further experiments. The degree of hydrolysis 

was calculated according to Valencia et al. (2014) in 

terms of the released amino groups using Eq. 1:  

 

α–NH (mM) =
𝐵∙𝑁

𝛼∙𝑉
            (Eq. 1) 

 

where, 𝐵 = volume (L) of NaOH added, 𝑁 = NaOH 

concentration (mM), 𝑉 = processing volume (L), and 

𝛼 = average degree of dissociation of the α–NH 

groups calculated from Eq. 2 and 3: 
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𝛼 =
10𝑝𝐻−𝑝𝐾

1+10𝑝𝐻−𝑝𝐾
             (Eq. 2) 

 

𝑝𝐾 = 7.8 +
298−𝑇

298∙𝑇
∙ 2400                (Eq. 3) 

 

Effect of substrate concentration and product 

addition on the reaction 

Enzymatic hydrolysis at different substrate 

concentrations (between 45.5 – 354 mM) was 

conducted to evaluate the effect of the substrate on 

the behaviour of reaction rate. Furthermore, three 

concentrations of hydrolysate (0, 4, and 20 mM), 

which were added before starting the hydrolysis, were 

used to evaluate the hypothesis of product inhibition. 

The hydrolysis conditions were at pH 10 and 60°C, 

and the addition of the base was controlled via the pH-

stat method. 

 

Thermal inactivation of Alcalase® 

The effect of temperature on the enzymatic 

activity of Alcalase® was evaluated at different 

temperatures (50, 60, and 70°C) under reactive 

conditions. The experiments were performed at a 

substrate concentration of 91 mM and pH 10. Once 

the desired temperature was reached, Alcalase® was 

added to the substrate, and samples were collected 

each 30 min for 210 min. The proteolytic activity of 

Alcalase® 2.4 L was determined following the 

procedure described in the catalytic activity of 

Alcalase® 2.4 L. The relative activity was calculated 

as a relation between the activity at time t with respect 

to the initial activity. The data were plotted and 

analysed to find the inactivation constant. 

 

Modelling and determination of kinetic parameters 

by fitting 

The degree of hydrolysis (DH) is a standard 

parameter to control the hydrolysis. It is the 

percentage of peptides bonds cleaved, which can be 

measured by the pH-stat technique based on the 

following principles (Adler-Nissen et al., 1983): 

 

Opening of peptide bond: 

 

−CHR′ − CO − NH − CHR′′ − + H2O
 Enzyme 
→        

−CHR′ − COOH +  NH2 − CHR′′ 

 

Proton exchange: 

 

−CHR′ − COOH + NH2 − CHR
′′⟶ −CHR′ − COO− + 

NH3
+ − CHR′′  

Titration of amino group: 

 

NH3
+ − CHR′′ +  OH−  ⇌  NH2 − CHR

′′ + H2O  

 

Each cleaved peptide bond forms one free 

amino group and one free carboxyl group. By adding 

a basic solution, the pH is kept constant, and the 

quantity of base is proportional to the number of 

peptide bonds cleaved.  

 Marquez Moreno and Fernandez Cuadrado 

(1993) obtained an expression (Eq. 4) in terms of the 

DH based on the general mechanism as follows: 

 

E + S 
𝑘1
⇌
𝑘−1

ES 
 𝑘2 
→  E + P 

 
𝑑(𝐷𝐻)

𝑑𝑡
= 𝑎𝑒−𝑏(𝐷𝐻)                   (Eq. 4) 

 

The inactivation mechanism of protease during 

hydrolysis is described by: 

 

E +  ES 
𝑘3 
→  EA + EI  + P 

 

By including the substrate and product 

inhibition as well as enzyme inactivation, Qi and He 

(2006) developed full deductions and mechanisms 

where the a and b from Eq. 4 are kinetic constants, 

and can be replaced by different expressions based on 

the reaction mechanism. Those expressions can be 

useful since several authors proved the effects of 

substrate inhibition (González-Tello et al., 1994; 

Márquez and Vázquez, 1999; Qi and He, 2006) and 

product inhibition (Demirhan et al., 2011; Valencia et 

al., 2014) as the following reactions: 

 

S + ES 
𝑘4
⇌
𝑘−4

SES 

 

E + P 
𝑘5
⇌
𝑘−5

EP 

 

Recently, Valencia et al. (2019) modified Eq. 

4 into an expression in terms of product concentration 

instead of the degree of hydrolysis as Eq. 5 shows: 

 
𝑑𝑃

𝑑𝑡
= 𝑎𝑒−𝑏𝑃  ∴  𝑃 =

1

𝑏
ln(𝑎𝑏𝑡 + 1)             (Eq. 5) 

 

For the product inhibition mechanism, the 

values of the parameters a and b correspond to Eqs. 6 
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and 7, respectively. Where 𝑘2, 𝐾𝑝, 𝐾𝑚, and 𝑘3 are 

parameters that must be determined; however, 

calculating exact values of these parameters is a 

difficult task since there are many of them to estimate.  

 

𝑎 =
𝑘2𝑒0𝑠0𝐾𝑝

𝐾𝑚𝑝+𝐾𝑝𝑠0
             (Eq. 6) 

 

𝑏 =
𝑘3𝐾𝑚𝐾𝑠

𝑘2(𝐾𝑚𝑝+𝐾𝑝𝑠0)
            (Eq. 7) 

 

In the present work, all the parameters were 

fitted using the curve_fit function of the 

SciPy.optimize module in python. It uses non-linear 

least squares to fit a function to data by using the 

Trust Region Reflective method for constrained 

problems. The boundaries of the parameters were [0, 

inf], and the starting values 1.0. 𝑅2 and 𝜒2 were used 

to evaluate the goodness of fit (Eqs. 8 and 11, 

respectively). Where 𝑆𝑆𝑟𝑒𝑠 was the sum of squares of 

residuals (Eq. 9), and 𝑆𝑆𝑡𝑜𝑡 was the total sum of 

squares (Eq. 10), in which 𝑦𝑖 were the actual values, 

𝑦�̂� were the predicted values, and �̅� was the mean 

value; 𝑁 was the number of parameters to fit. 𝑅2 

around 1.0, and 𝜒2 around 0 determine a good fit of 

the experimental data. 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
             (Eq. 8) 

 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑦�̂�)
2

𝑖             (Eq. 9) 

 

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − �̅�)
2

𝑖           (Eq. 10) 

 

2 =
𝑆𝑆𝑟𝑒𝑠

𝑁
           (Eq. 11) 

 

Artificial neural network 

An artificial neural network is a mathematical 

model to predict values by training a dataset. It is a 

network of interconnected units or elements called 

neurons (Haykin, 1999). It consists of an input layer, 

one or more hidden layers, and an output layer (Svozil 

et al., 1997). In the input layer, a function concerning 

weights (w) and biases (b) (Eq. 12) is applied to the 

features for all the training examples. In the hidden 

layer, an activation function is applied to pass to the 

output layer, in which the new data are applied to 

another activation function to calculate the predicted 

values that are passed to a loss function. Based on the 

value of the loss function, the algorithm makes 

calculations and goes in the opposite direction to the 

input layer to update the values of weights and biases. 

Z = wX + b           (Eq. 12) 

 

The architecture of the neural network selected 

for the modelling of the enzymatic hydrolysis of red 

tilapia viscera consisted of an input layer, a hidden 

layer, and an output layer. The input features were 𝑆0, 

𝑒0, and 𝑡, so the input layer consisted of three units 

interconnected to one hidden layer. The hidden layer 

consisted of 10 units which have been demonstrated 

to work very well in modelling enzymatic hydrolysis 

(Gálvez et al., 2016; Morales-Medina et al., 2016). 

The activation function for the hidden layer was the 

tanh function that returned values between -1 and 1 

following Eq. 13. For the output layer, the relu 

(rectifier linear unit) activation function (Eq. 14) was 

used, which is suitable for regression problems. The 

cost function was the mean squared error (Eq. 15), in 

which n was the number of training examples, 𝑦𝑖 were 

the actual values of the training examples, and 𝑦�̂� were 

the predicted values from the neural network. 

 

tanh(z)=
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
          (Eq. 13) 

 

𝑎 = max (0, 𝑧)           (Eq. 14) 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1           (Eq. 15) 

 

The Adam optimiser (Kingma and Ba, 2015) 

— an efficient algorithm that is gaining popularity 

(Bansal et al., 2016; Peng et al., 2018; Chang et al., 

2019) was used to update the network weights in an 

iterative process. To train the neural network, 100 

epochs that are the number of iterations or passes 

through the training dataset were used. The batch size 

was one; it means that the algorithm iterates in group 

samples of one. The data were pre-processed with the 

MinMaxScaler function from the 

sklearn.preprocessing module, which transformed the 

input features to the range of 0 - 1. Also, the data were 

split into 70% for training and 15% for testing with 

the train_test_split function from the 

sklearn.model_selection, while the remaining 15% 

were selected for final validation. 

 

Results and discussion 

 

Effect of pH and temperature on the catalytic activity 

of the enzyme 

A central composite design to study the effect 

of the temperature (T) and pH on the catalytic activity 
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of Alcalase® in the presence of red tilapia viscera was 

used. The p-values being lower than 0.005 showed 

that the temperature and pH had a statistically 

significant effect on the activity of the enzyme, with 

both variables having a positive effect. The surface 

response methodology indicated that the conditions 

that maximise activity were pH 10 and temperature 

60°C. 

The conditions of enzymatic hydrolysis affect 

the properties of the generated hydrolysates. In 

accordance with the specificity of enzymes, they 

catalyse the hydrolysis of specific peptide bonds in 

proteins (Dermiki and FitzGerald, 2020). Proteinases 

have optimal pH and temperature values that should 

be controlled during hydrolysis. Alcalase® is a serine 

protease produced by Bacillus licheniformis with a 

typical pH range of 6 - 10, with the manufacturer 

reporting that the optimum pH can be found at 10 

with remarkable stability at alkaline pH values, and 

an optimal temperature range of 50 - 60°C (Adler-

Nissen, 1993; González-Tello et al., 1994; Tacias-

Pascacio et al., 2020), which agrees with the values 

of pH and temperature found in the present work. An 

optimal pH value of 9.5 was found in a study 

conducted on tilapia viscera using Alcalase® (Baez-

Suarez et al., 2016). 

Other studies have reported hydrolysis at 60°C 

with the same enzyme such as the enzymatic 

hydrolysis of Nile tilapia (O. niloticus) skeleton flour 

(Borges-Contreras et al., 2019), bovine plasma 

hydrolysis (Gómez Sampedro and Zapata Montoya, 

2016), hydrolysis of rainbow trout viscera (Vasquez 

and Zapata Montoya, 2018), hydrolysis of flaxseed 

(Linum usitatissimum) protein (Silva et al., 2017), 

and hydrolysis of tilapia (O. niloticus) by-product 

(Roslan et al., 2014). The optimal conditions (pH 10, 

60°C) were used for the subsequent experiments. 

 

Effect of substrate concentration and product 

addition on the reaction 

Figure 1a shows the saturation curve for the 

enzymatic hydrolysis of red tilapia viscera. The 

reaction rate increased as the substrate concentration 

increased; however, from 220 mM, the enzyme 

became saturated with substrate. Since the reaction 

rate remained constant in this range of concentration, 

the inhibition by substrate was ruled out in the 

concentration range of the substrate studied. The 

kinetic parameters 𝐾𝑀 and 𝑉𝑚𝑎𝑥, obtained by a non-

linear fit, were 118.7 mM and 2.5 mM/min, 

respectively. These values were higher than those 

found in cheese whey hydrolysates, whey 

hydrolysates (Sousa et al., 2004), and salmon (Salmo 

salar) muscle hydrolysates (Valencia et al., 2014). 

Those studies also used Alcalase® as an enzyme. 

Finding the initial velocity while varying 

substrate concentration and product concentration 

helps to evaluate the hypothesis of inhibition by 

product. Results showed that as the concentration of 

hydrolysate (inhibitor) increased, the initial rates 

decreased. When fixing the inhibitor concentration, 

the values of 𝐾𝑀
𝑎𝑝𝑝

and 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

 were obtained with a 

non-linear curve-fitting from Michaelis-Menten 

equation (Eq. 16): 

 

𝑣 = 𝑉𝑚𝑎𝑥 (
1

1+
𝐾𝑀
[𝑆]

)             (Eq. 16) 

 

The values of 𝐾𝑀
𝑎𝑝𝑝

and 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

 were used in the 

reciprocal Eq. 17 to obtain a linear function for each 

concentration of inhibitor. The double-reciprocal 

plots (Figure 1b) are useful to determine the modality 

of inhibition from the pattern of lines. The pattern of 

the straight lines with the competitive inhibitor. 

 

 
 

Figure 1. (a) Saturation curve for Alcalase® showing the relation between the concentration of tilapia 

viscera and reaction rate, and (b) double-reciprocal plot for the effect of the inhibitor on the velocity. 
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These results were coherent because both the 

substrate and the product had the same structural 

nature, and therefore, they might have bound to the 

enzyme at the same active site. The values of 𝐾𝐼 and 

𝐾𝑀 were obtained from a secondary plot of 𝐾𝑀
𝑎𝑝𝑝

 as a 

function of inhibitor concentration [I]. The x-intercept 

is equal to the negative value of the 𝐾𝐼, and the y 

intercept is equal to 𝐾𝑀 (Copeland, 2000). 

 
1

𝑣
= (

𝐾𝑀

𝑉𝑚𝑎𝑥

1

[𝑆]
) + 

1

𝑉𝑚𝑎𝑥
            (Eq. 17) 

 

The values of 𝐾𝐼 and 𝐾𝑀 were 22.38 and 134.7 

mM, respectively. 𝐾𝐼 was lower than 𝐾𝑀, which is 

characteristic of competitive inhibition. In this type of 

inhibition, an inhibitor competes with the substrate 

for the active site of the enzyme. In common 

hydrolysis conditions, the peptide products of 

hydrolysis become substrates which favour a 

competition between the original substrate and the 

peptides (Adler-Nissen, 1993). These results could 

suggest a preference of the enzyme for smaller 

peptides, since it was expected that the peptides from 

the hydrolysate would be smaller than those from the 

substrate. Other studies have also suggested 

inhibition by product. For example, González-Tello 

et al. (1994) proposed that the decrease observed in 

the rate of hydrolysis of whey proteins could be due 

to an inhibition by the products of hydrolysis. Sousa 

et al. (2004) concluded that a kinetic model with 

competitive inhibition by product presented a better 

fit for its experimental data on the hydrolysis of whey 

protein by Alcalase®. Similarly, Demirhan et al. 

(2011) found that the hydrolysis of sesame cake 

protein by Alcalase® exhibited product inhibition. 

Valencia et al. (2014) found an inhibition by 

hydrolysis products in the hydrolysis of salmon 

muscle. They concluded that this inhibition handles 

the typical shape of the hydrolysis curve.  

 

Thermal inactivation 

The thermal inactivation of the enzyme during 

hydrolysis was studied at three temperatures (50, 60, 

and 70°C) in the presence of red tilapia viscera (91 

mM). Figure 2 shows that the increase in the 

hydrolysis temperature decreases the activity of the 

enzyme. At 50°C, the enzyme kept its activity for 180 

min; however, at 60°C, the activity after 180 min was 

50% less. On the other hand, at 70°C, the inactivation 

of the Alcalase® was faster and fell dramatically after 

30 min. Thermal inactivation of the enzyme at 60°C 

had the best fit with second-order inactivation 

kinetics with an 𝑅2 of 0.99. This result agrees with 

several studies that suggest that the inactivation of the 

enzyme during hydrolysis is a second-order reaction 

(Marquez Moreno and Fernandez Cuadrado, 1993; 

González-Tello et al., 1994; Qi and He, 2006). 

 

 
 

Figure 2. Thermal inactivation of Alcalase® at 50, 

60, and 70°C. Error bars represent the standard 

deviation (n = 3). 

 

Determination of kinetic parameters 

Eq. 5 (Valencia et al., 2014) was selected to 

determine the kinetic parameters of red tilapia viscera 

enzymatic hydrolysis, based on the findings in the 

product inhibition and enzyme inactivation obtained 

in the present work. The 𝐾𝐼 and 𝐾𝑀 values calculated 

previously were used as known constants in the 

model to decrease the number of parameters to 

estimate. 𝐾𝐼 represents 𝐾𝑝 in Eqs. 6 and 7, since it 

corresponds to the inhibition by product. For the 0.5 

L reactor, the best set of parameters that acceptably 

modelled all the curves of red tilapia viscera were 𝑘2 

= 5.36 mM·L/min·g, p = 0.75 mM, and 𝑘3 = 3.13 

L/g·min (Figure 3), with an 𝑅2 of 0.928, 0.992, and 

0.983 for 45.5, 91.0, and 136.5 mM, respectively. 

These results showed that the product inhibition 

mechanism described the experimental data in the 

concentration range of the evaluated substrate. 

When performing the same procedure to the 

reactor of 5 L, it was found that the model from Eq. 5 

did not fit the model with just one set of kinetic 

parameters, even using the same hydrolysis 

conditions and substrate concentration ranges as in 

the smaller reactor. However, parameters a and b 

were estimated, and are shown in Table 1. For that 

reason, the enzymatic hydrolysis of red tilapia viscera 

in a 5 L reactor was modelled with a neural network 
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Figure 3. Hydrolysis reaction at different substrate concentrations of red tilapia viscera in a 0.5 L reactor 

using 1 g/L Alcalase®, pH 10, and 60°C. Data points are the experimental values, and continuous lines 

are the fitted model according to Eq. 5. 

 

Table 1. Parameters obtained in the fitting of the 

enzymatic hydrolysis of red tilapia viscera in a 0.5 L 

reactor. 

s0 

(mM) 

e0 

(g/L) 
𝒂 𝒃 𝑹𝟐 𝝌𝟐 

10 1 12.673 1.433 0.711 0.168 

10 2 43.198 0.865 0.622 0.833 

10 3 14.539 0.387 0.96 0.835 

30 3 9.957 0.185 0.995 0.162 

40 3 6.464 0.159 0.998 0.082 

 

approach. Neural networks can model biological 

processes such as enzymatic reactions, represent non-

linear relationships, and estimate the response based 

on trained data (Ba and Boyaci, 2007; Gálvez et al., 

2016; Morales-Medina et al., 2016).  

 

Artificial neural network 

All the programming was made in Python 3.7 

— a general-purpose, open-source programming 

language — Keras, which is a high-level application 

programming interface of TensorFlow 2 was used for 

developing deep learning models. Specifically, the 

sequential class of the module 

tensorflow.keras.models was used to build and train 

the neural network. For the experiments, the enzyme 

concentration ranged from 1 - 3 g/L, with the 

substrate concentration from 10 - 40 mM, and 

reaction time of 180 min for all the enzymatic 

hydrolysis. This gave a total of 7,668 data points to 

train and validate the ANN. 

The mean square error of the neural network 

training after the 100 epochs was 2 × 10-4 for both the 

train and test datasets (Figure 4a), which is acceptable 

for the values of products in the enzymatic hydrolysis. 

Das et al. (2015) set a value of 5 × 10-4 for the 

modelling of the enzymatic saccharification of water 

hyacinth biomass for ethanol, and found that a neural 

network reached that value. Figure 4b shows that the 

predicted values agreed with the experimental ones. 

It corresponded to an 𝑅2 of 0.999, which proved the 

excellent behaviour of the artificial neural network. 

The 𝑅2 of the training set was 0.999, which was 

similar to that obtained for the test set, and confirmed 

that there was no overfitting of the training dataset.  

The results obtained in the present work are 

similar to that reported in the literature concerning 

biological systems. To name a few, Chang et al. 

(2011) modelled the enzymatic hydrolysis of steam-

exploded Napier grass, and found that a neural 

network (𝑅2 = 0.988) performed better than both 

multiple linear regression and partial least-square 

regression. Das et al. (2015) found that a neural 

network with an 𝑅2 of 0.9996 had higher accuracy 

than the surface response methodology. Das et al. 

(2015) found an 𝑅2 value of 0.9987 for a neural 

network in the modelling of the production of blood 

protein hydrolysates for plant fertilisation. Morales-
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Medina et al. (2016) found an 𝑅2 of 0.978 in the 

modeling of the enzymatic hydrolysis of horse 

mackerel (Trachurus mediterraneus) protein using 

protease. 

The high 𝑅2 and low mean square error found 

 

in the present work make neural networks suitable for 

the modelling of the enzymatic hydrolysis of red 

tilapia viscera, at substrate and enzyme 

concentrations in the range of 10 - 40 mM and 1 - 3 

g/L, respectively. 

 
 

Figure 4. Neural network results: (a) experimental and predicted concentration of product from the 

validation values, and (b) mean square error for the neural network up to 100 epochs. 

 

Conclusion 

 

Temperature and pH affected the catalytic 

activity of the enzymatic hydrolysis reaction of red 

tilapia (Oreochromis spp.) viscera. The reaction 

presented competitive inhibition by the product (new 

peptides released from hydrolysis). At temperatures 

above 60°C, the Alcalase® enzyme was deactivated 

following second-order kinetics. Kinetic models 

could predict the behaviour of the enzymatic 

hydrolysis of red tilapia viscera with Alcalase® in a 

0.5 L reactor. However, they failed in modelling the 

hydrolysis in 5 L reactors. In a 5 L reactor, an 

artificial neural network approach behaved better, 

thus suggesting that this kind of model could be 

suitable for predicting enzymatic hydrolysis in larger 

reactors. 
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